Mössbauer spectroscopy of Iron Containing Proteins and Related Model Complexes

Volker Schünemann

AG Biophysics and Medical Physics
Department of Physics
University of Kaiserslautern

50 Years After - The Mössbauer Effect Today and in Future
München 2008
AG Biophysics and Medical Physics

Research focus: Conventional and Synchrotron based Mössbauer spectroscopy (ESRF, Grenoble; and planning: 2010 Petra III DESY, Hamburg)
Closed Cycle Mössbauer Cryostat in Kaiserslautern

CRYO – Industries of America

Temperature range: 2–300K
Max. Magnetic Field: 5 T
Cool down time: 48 h
1. High-Valent Iron Spezies in Physiologically Relevant Enzymatic Reactions
 - Cytochrome P450
 - Nitric Oxide Synthase (NOS)

2. New Iron-Sulfur-Proteins
 - The radical SAM enzyme coproporphyrinogen III oxidase HemN
 - The ATP-binding cassette protein ABCE1

3. Outlook
Regulation of cell function
- a very complex phenomenon

1. High-valent iron oxidation states and protein radicals in NO synthases and cytochrome P450

Compounds I: High-valent $[Fe^{IV}=O]^{2+}$-species + radical on the porphyrin ring

neuronal disorder, cardiovascular diseases, inflammatory cancer, oxidative stress... etc
The bacterium *Pseudomonas Putida* metabolizes Camphor ($C_{10}H_{16}O$).

Cytochrom P450$_{cam}$ introduces oxygen O at position 5 of Camphor (Monooxygenation in 5-Position).
Preparation of cpd I using the „shunt“- reaction:

- Addition of peracetic acid to native P450cam

\[
\text{HO-O-C-CH}_3
\]

- Cryo-freezing of the reaction mixture within milliseconds

Investigation by

- Mössbauer spectroscopy
- EPR spectroscopy
Preparation of intermediates by rapid freeze quench

Rapid Freeze Quench set-up.

packing factor: ½

Isopentane (-110 °C)

sample for EPR experiments

Mössbauer
Mössbauer spectroscopy

- Doublet with $\delta=0.13$ mms$^{-1}$ and $\Delta E_Q=1.94$ mms$^{-1}$ characteristic for FeIV ($S=1$) (13 ± 2% relative contribution)

EPR spectroscopy

- Creation of a Tyrosylradical?

P450cam: Radical assignment by high-field EPR (94 GHz)

Heller-McConnel-relation:
\[A(H_{\beta 1,2}) = \rho_{\pi}(C_1)\{B^1 + B^{1'}\cos^2\theta_{1,2}\} \]

Calculated dihedral angles:
\[\theta_1 = +40.50^\circ; \theta_2 = -79.50^\circ \]

⇒ Tyr96 is the radical

Crystal structure:

\[\theta_1 = 26^\circ \]
\[\theta_1 = 41^\circ \]

Crystal structure:

Edge on view:

94 GHz EPR

\[g_x, g_y, g_z \]

Splitting of \(g_z \) and \(g_x \)

Splitting of \(g_x \), \(g_y \) and \(g_z \)

To detect Compound I the electron transfer must be disrupted!
Comparison

Chloroperoxidase (CPO)

Chloroperoxidase (CPO) contains iron in the Fe(IV) state, which is involved in the reaction with a porphyrin-π-cation radical. The oxidation state of iron is Fe(IV) and the porphyrin radical is reduced by electron transfer from Tyr96.

- Fe(IV) S=1
- exchange coupling between Fe(IV) and porphyrin radical

P450cam

P450cam also contains iron in the Fe(IV) state. The iron oxidation state is Fe(IV) S=1 with a porphyrin-π-cation radical reduced by electron transfer from Tyr96.

Nitric oxide synthases (NOS) belong to a physiologically highly important heme enzyme family which catalyzes the synthesis of the messenger molecule NO in all forms of life.

In humans:
- iNOS: inducible (immune system response)
- nNOS: neuronal (neuro-signal transmission)
- eNOS: endothelial (blood pressure regulation)

Questions:
- How does this work?
- What are the reaction intermediates?

? Compound I ?
9.6 GHz EPR of nNOS after 8ms reaction with peracetic acid (8ms)

Experiment
- Start nNOS
 - 90% Fe$^{3+}$-low-spin (2.43; 2.28; 1.90)
 - 10% Fe$^{3+}$-high-spin (7.40; 4.20; 2.00)

Simulation
- 8ms nNOS intermediate
 - 80% radical (g=2.0)
 - 20% unknown species g=(2.23; 2.24; 1.96)

Unknown S=1/2 species:
- Fe(IV)=O porphyrin-π-cation radical with strong antiparallel exchange coupling (with g_{\perp}~2.2 and $g_{||}$=1.96, $J>>D$).

nNOS: Mössbauer spectroscopy identifies Fe(III)

Start material

- nNOS: $\delta = 0.38 \text{ mms}^{-1}$, $\Delta E_Q = 2.48 \text{ mms}^{-1}$ (42±7%)

- Clusters of iron hydroxide (artefact): $\delta = 0.518 \text{ mms}^{-1}$, $\Delta E_Q = 0.675 \text{ mms}^{-1}$ (57±3%)

8 ms reaction time

- Intermediate: Doublet with $\delta = 0.27 \text{ mms}^{-1}$ und $\Delta E_Q = 2.36 \text{ mms}^{-1}$ (29% ±5%)

- $\delta > 0.20 \text{ mms}^{-1}$:
 - no Fe(IV)
 - Fe(II)O$_2$ (unlikely)
 - Fe(III) ($S=1/2$) coupled to a radical ($S'=\frac{1}{2}$) possibly Trp 409?
Mössbauer spectroscopy of neuronal NOS

Perry & Marletta: PNAS 95, 11101 (1998)

1QW6

Mössbauer spectrum of nNOS purified in the presence of EDTA:

T=4.2 K
B=20 mT

relative transmission

velocity [mm/s]
2. The [4Fe-4S] cluster of the radical SAM enzyme coproporphyrinogen III oxidase HemN

The Radical SAM enzyme oxygen-independent coproporphyrinogen III oxidase HemN catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX during bacterial heme biosynthesis.
The [4Fe-4S] cluster of the radical SAM enzyme coproporphyrinogen III oxidase HemN

- Anaerobically purified HemN has a [4Fe-4S]$^{2+}$ cluster in which only three iron atoms were coordinated by cysteine residues (isomer shift of $\delta = 0.44(1)$ mm/s).
- The fourth non cysteine-ligated iron exhibits $\delta = 0.57(3)$ mm/s which shifts to $\delta = 0.68(3)$ mm/s upon addition of SAM

The ATP-binding cassette protein ABCE1

- Expressed in almost all organisms an essential for life
- Fundamental function in translation initiation and/or ribosome biosynthesis
- Molecular mechanisms not known

ABCE1 has two \([4\text{Fe}-4\text{S}]^{2+}\) clusters with different electronic environments, one ferredoxin-like \((\text{CPX}_n\text{CX}_2\text{CX}_2\text{C})\) and one unique ABCE1-type cluster \((\text{CXPX}_2\text{CX}_3\text{CX}_n\text{CP})\)

3. Overview and Outlook

- **New iron-sulfur proteins** have been and will be detected
- **Polynuclear iron-oxo-centers** are currently under investigation in our laboratory (in cooperation with P. Sadler, University of Warwick, GB)
- **Enzymatic reaction intermediates**
- **Biofunctionalized nanoparticles (Au-Fe-oxide nanoparticles)**
- **Highvalent Fe(IV)-, Fe(V), and Fe(VI) complexes**
- **Iron-uptake in plants and organic tissues**
Acknowledgement

AG Schünemann

Dr. J. Wolny (BMBF) A. Janoschka (Land RP) B. Hewener (DFG)

R. Christmann (DFG) P. Reitz D. Fox P. Pereira H. Schuster

Dr. K. Muffler (BMBF) A. Ahrens (Land RP), A. Pasteur A. Paul, D. Weller
Acknowledgement

A.X. Trautwein, H. Paulsen, H. Winkler, P. Wegner, L. Böttger,
C. Schmidt, A. Sawaryn (Universität zu Lübeck)
G. Layer, D. Jahn (TU Braunschweig)
C. Jung (MDC Berlin, now KKS Ultraschall AG, Switzerland)

F. Lendzian (TU Berlin) (94 GHz EPR)

A.-L. Barra (Grenoble High Magnetic Field Laboratory, CNRS), France
(285 GHz EPR)

R. Rüffer, C. Chumakov (ESRF, Grenoble)

D. Barthelme, R. Tampé (Universität Frankfurt)

Deutsche Forschungsgemeinschaft; BMBF; DAAD-PROCOPE; Land Rheinland-Pfalz